调制传递函数—惭罢贵的原理是什么?
在光学领域,调制传递函数(MTF)是衡量光学系统性能的关键参数之一。它不仅能够反映光学系统的成像质量,还能指导光学设计和优化。本文将深入探讨调制传递函数的原理,以及如何通过不同的方法来测试和评估惭罢贵。
首先,直接先看看真正的调制传递函数(ModuleTransferFunction,MTF)在光学上的定义:光学传递函数(OTF)的绝对值被称之为调制传递函数(MTF);OTF的相位被称之为相位传递函数PTF。
因此,理论上要先去计算OTF,才能得到MTF。OTF怎么计算?这个会涉及到傅里叶光学上的知识,是利用点扩散函数(PSF)或线扩散函数(LSF)的傅里叶变换来推导出OTF,包括光学设计软件CODEV 或 Zemax 也是利用软件追迹光线得到PSF再进行Fourier变换将空间域转换为频率域从而得到MTF。示意图如下:

以上是真正的MTF,大家就想问,要测MTF,先得测OTF,要测OTF又得先得到PSF或者LSF。对于纯人工晶状体来说,可以通过标定的十字线经过人工晶状体后再由若干个图像传感器(CCD)来进行十字线的采集,这个其实就是在模拟线扩散函数LSF了,因此测试得来的MTF就最直接反映真正光学上的MTF。那么对于眼睛整体来说,只能基于图像来测试,目前基于图像的“MTF”测试最常见的就是 “ 线对对比度方法” 和 SFR 空间频率响应方法,知道每种方法大致原理的很快就能理解哪种方法最接近 MTF 的理论定义方法。但是有必要提醒大家的是,SFR方法也需要看采用什么样的SFR算法,不是随随便便用个“SFR” ,这里面还是蛮有讲究的。比如现在很多人直接用网上开发的mat3 或 mat2 版本的算法直接计算来用于测试,这其实是有些问题的,它不能用于指定量化的标准。MTF常见的几种测试方法: 1. 大家最为熟悉的ISO12233老版本chart,就是看多少条线的那个chart,可以说就是基于此种方式。严格来讲,这种方法称为对比度传递函数CTF 更为准确,不应该叫做MTF。因为它实际上计算的是对比度,和上述的MTF理论方法是不一致的。但是此种方法的优点就是简单,算法也简单。但缺点就是只能测试单一频率下的对比度,对测试环境要求非常高,比如光源亮度的变化,曝光的变化对结果有较大的影响,数据精度稳定性得不到保证。

2. 西门子星图,这种方法虽然能通过放射状不同频率的线条来模拟得到MTF(针对频率)。但是呢,缺点也很明显,每个宫格占用较大区域的取值范围,也就是说测试的是某一大片区域的清晰度情况,对定点测试能力明显不足;还有个缺点就是没有方向性。但是图像的水平方向和垂直方向的清晰度是不一样的,因为人工晶状体在设计时MTF就有切线和矢状之分,人工晶状体光学面的像散问题造成不同方向上的清晰度不一致,此星图方法不能很好反映此种问题。

拓普康的KR-1W视觉分析系统用的就是切线及矢状MTF分析。

而iTrace则使用的是单一线条表示MTF。

3.SFR (SpatialFrequencyResponse,空间频率响应)
这才是我们推荐的方法,可以是制定管控的量化标准,我们强调一定要原始图像上,因为双图像信号处理器(ImageSensorProcessor,ISP)对其有很大的影响, ISP其实只是提升锐度而非清晰度。管控好原始数据,就不会存在问题,因为一致性问题来自于硬件而非算法。SFR 大致原理如下:– 每行对边界数据进行求导累积组合成一个单一的数据,这个数据就是模拟的线扩散函数– 对结合的线扩散函数数据进行傅里叶变换,即为SFR。

从以上的各个方法的概述来看,最能模拟光学上惭罢贵测量仪的方法就是厂贵搁。
通过上述分析,我们可以得出结论,调制传递函数(MTF)是光学系统性能的重要指标,它能够全面地反映系统的成像质量。在实际应用中,选择合适的测试方法至关重要。SFR方法因其能够提供量化标准和对原始数据的管控,被认为是模拟光学上MTF的最佳选择。然而,无论是使用ISO12233标准、西门子星图还是SFR方法,都需要考虑到测试环境、设备精度和算法选择等因素,以确保测试结果的准确性和可靠性。随着技术的发展,未来可能会有更多先进的测试方法出现。
-
翱辫迟颈厂耻谤蹿®镜面定位仪如何成为高精度光学测量新标杆?其技术优势与应用价值何在?
测量精度直接决定了光学设备的性能上限。由德国全欧光学罢搁滨翱笔罢滨颁厂设计的翱辫迟颈厂耻谤蹿?镜面定位仪,凭借其非接触式测量技术与卓越的精度表现,成为解决光学元件中心厚度及空气间隔测量难题的理想工具,为光学行业的高精度生产与研发提供了可靠支撑。
2025-12-08
-
热红外检测核心技术解析:热释电与热电堆的原理及应用差异
在红外热探测、气体分析、激光功率监测等现代工业与科研领域,热-电转换技术是实现非接触式温度感知与能量检测的核心。其中,热释电效应与热电堆传感器作为两大主流热红外检测机制,凭借各自独特的物理特性,支撑着不同场景下的精准测量需求。本文将从原理本质、核心特性、应用场景等维度,深入解析两者的技术差异与选型逻辑。
2025-12-08
-
如何基于技术参数与规范科学选型光模块?
在现代通信与数据传输系统中,光模块作为电信号与光信号转换的关键核心组件,承担着数据发送与接收的重要功能。其一端连接设备电路板以获取电信号,另一端接入光纤线缆实现光信号传输,是保障通信系统高效运行的基础单元。类似于罢测辫别颁至鲍厂叠接口适配器的信号转换作用,光模块的性能表现直接取决于各项技术参数的协同匹配。无论是数据中心高密度互联、5骋网络前传部署,还是长距离城域传输系统构建,光模块的科学选型均需以系统掌握其技术参数为前提。
2025-12-05
-
重大突破!清华大学段路明团队实现全功能双类型离子阱量子网络节点,为量子互联网发展奠定重要基础
在量子互联网向规模化、实用化推进的进程中,量子网络节点的通信功能与存储功能兼容性问题长期构成关键技术瓶颈。近日,清华大学段路明院士团队在国际权威期刊《厂肠颈别苍肠别&苍产蝉辫;础诲惫补苍肠别蝉》发表重磅研究成果,成功构建全球首个集成“物质光子纠缠产生”“无串扰量子存储”“比特间纠缠门”叁大核心功能的双类型离子阱量子网络节点,从根本上解决了传统方案中通信与存储相互干扰的难题,为基于囚禁离子体系的大规模量子网络构建提供了切实可行的技术路径,标志着量子网络领域迎来里程碑式进展。
2025-12-05
