什么是机械定心法,机械定心法的原理、系数和精度分析
机械法定心是一种精密的工艺,能保证透镜在固定过程中的稳定性和精确性。在实际操作中,定心过程需要非常细致和耐心的调整。技术操作人员必须不断地监测透镜的位置,通过精密的测量仪器来确保力的平衡。从而透镜的稳定性和光学性能将得到显著提升,从而使得整个光学系统的性能达到设计要求。下面一起来看看具体的原理吧!
一、机械定心法原理
机械法定心是将透镜放在一对同轴精度高、端面精确垂直于轴线的接头之间,利用弹簧压力夹紧透镜,根据力的平衡来实现定心。一个接头可以转动,另一个既能转动又能沿轴向移动。当透镜光轴与机床主轴尚未重合时,如图所示,假设接头与透镜接触后,则接头施加给透镜压力N,方向垂直于透镜表面。压力N可分解为垂直于接头端面的夹紧力F和垂直于轴线的定心力P。定心力P将克服透镜与接头之间的摩擦力,使透镜沿垂直于轴线方向移动,夹紧力F将推动透镜沿轴线方向移动。当透镜光轴与机床主轴重合时,定心力就达到平衡,即完成定心。

二、机械定心法的系数
不是所有的透镜都能采用机械方法定心,因此,光学镜片在定心之前,可计算定心系数K值来判断加工的难易度,作为设计工艺与夹具的参考。

从上图可以看出,定心力的大小与接头和透镜之间的压力的大小和方向有关。压力的大小是由弹簧力决定的,而方向是由透镜的定心角(夹紧角)决定,定心角是指在接头轴线平面内,透镜与接头接触点的切线间的夹角α。设接头和透镜之间的定心角为αi,接头的直径为Di,透镜非黏结面的曲率半径为Ri,则定心角的正切值为

通过一系列计算可得机械法定心系数K为

假设摩擦系数μ=0.15,则上式计算得出的K≥0.15,说明定心角α=17°30′,则定心可行;若0.1<K<0.15,则相当于定心角为12°<α<17°30′,定心效果差;若K<0.1,相当于α<12°,则不能定心。
三、影响机械法定心精度的因素
1)机床主轴径向跳动
机床主轴径向跳动直接会造成透镜基准轴的位置变化,因此,机床使用前一定要校正主轴跳动,使其径向跳动小于定心精度。
2)接头
机械法定心的关键是定心接头的精度和质量,要防止接头表面划伤抛光表面,并能保证定心后的中心误差精度,因此,对接头提出如下要求:
(a)接头轴与机床回转轴的重合精度应高于定心精度。
(b)接头端面应与几何轴线精确垂直。
(c)接头端面应光滑,不能擦伤透镜抛光表面,表面粗糙度应达到*Ra*0.16。
(d)接头外径比透镜完工外径小0.15~0.30mm。
(e)接头材料通常选用黄铜或钢。
以上就是机械定心法的原理、系数和精度分析,如果您还有更多对于定心车的内容,请持续关注欧光科技。
-
翱辫迟颈厂耻谤蹿®镜面定位仪如何成为高精度光学测量新标杆?其技术优势与应用价值何在?
测量精度直接决定了光学设备的性能上限。由德国全欧光学罢搁滨翱笔罢滨颁厂设计的翱辫迟颈厂耻谤蹿?镜面定位仪,凭借其非接触式测量技术与卓越的精度表现,成为解决光学元件中心厚度及空气间隔测量难题的理想工具,为光学行业的高精度生产与研发提供了可靠支撑。
2025-12-08
-
热红外检测核心技术解析:热释电与热电堆的原理及应用差异
在红外热探测、气体分析、激光功率监测等现代工业与科研领域,热-电转换技术是实现非接触式温度感知与能量检测的核心。其中,热释电效应与热电堆传感器作为两大主流热红外检测机制,凭借各自独特的物理特性,支撑着不同场景下的精准测量需求。本文将从原理本质、核心特性、应用场景等维度,深入解析两者的技术差异与选型逻辑。
2025-12-08
-
如何基于技术参数与规范科学选型光模块?
在现代通信与数据传输系统中,光模块作为电信号与光信号转换的关键核心组件,承担着数据发送与接收的重要功能。其一端连接设备电路板以获取电信号,另一端接入光纤线缆实现光信号传输,是保障通信系统高效运行的基础单元。类似于罢测辫别颁至鲍厂叠接口适配器的信号转换作用,光模块的性能表现直接取决于各项技术参数的协同匹配。无论是数据中心高密度互联、5骋网络前传部署,还是长距离城域传输系统构建,光模块的科学选型均需以系统掌握其技术参数为前提。
2025-12-05
-
重大突破!清华大学段路明团队实现全功能双类型离子阱量子网络节点,为量子互联网发展奠定重要基础
在量子互联网向规模化、实用化推进的进程中,量子网络节点的通信功能与存储功能兼容性问题长期构成关键技术瓶颈。近日,清华大学段路明院士团队在国际权威期刊《厂肠颈别苍肠别&苍产蝉辫;础诲惫补苍肠别蝉》发表重磅研究成果,成功构建全球首个集成“物质光子纠缠产生”“无串扰量子存储”“比特间纠缠门”叁大核心功能的双类型离子阱量子网络节点,从根本上解决了传统方案中通信与存储相互干扰的难题,为基于囚禁离子体系的大规模量子网络构建提供了切实可行的技术路径,标志着量子网络领域迎来里程碑式进展。
2025-12-05
