激光通信的优点与缺点有哪些
激光本身具有亮度高、方向性强、单色性好、相干性强的特点。除语言信息外,还可以传输文本、数据、图像等信息。

一、激光通信的优点
1、通讯容量大。理论上,激光通信可以同时传输1000万路电视节目和100亿路电话。
2、保密性强。激光不仅方向性很强,而且可以利用不可见光,因此不易被敌人拦截,保密性能好。
3、结构轻巧,设备经济。由于激光束发散角小、方向性好,激光通信所需的发射天线和接收天线可以做得很小。一般天线的直径为几十厘米,重量只有几公斤。然而,具有类似功能的微波天线的重量为数吨或数十吨。
二、激光通信的缺点:
1、通讯距离仅限于视距(几公里到几十公里),容易受气候影响,恶劣天气条件下甚至可能造成通讯中断。大气中的氧气、氮气、二氧化碳、水蒸气等大气分子吸收光信号;大气分子和悬浮在大气中的灰尘、烟雾、冰晶、盐颗粒、微生物和微小水滴的密度不均匀会影响光信号有散射效应。云、雨、雾、雪等都会严重衰减激光。地球表面空气对流引起的大气湍流会引起光束偏转、光束扩散、光束闪烁(光束截面内亮斑和暗斑的随机变化)和图像抖动(光束会聚点的随机跳动)从而影响激光传输。
2、不同波长的激光在大气中的衰减不同。理论和实践证明,波长为0.4~0.7&尘耻;尘和波长为0.9、1.06、2.3.3.8.10.6&尘耻;尘的激光衰减较小,其中波长为0.6&尘耻;尘的激光穿透雾气的能力较强。大气激光通信可用于江河、湖泊、边防、海岛、高山峡谷等地的通信,也可作为微波通信或同轴电缆通信中断修复时的临时替代设备。波长接近0.5&尘耻;尘的蓝绿激光器可用于水下通信或潜艇通信。
3、瞄准困难。激光束具有极高的方向性,这使得发射点和接收点之间的瞄准变得困难。为了保证发射点和接收点之间的瞄准,不仅对设备的稳定性和准确性提出了很高的要求,而且操作也很复杂。
延伸阅读:
1、激光通信是利用激光来传输信息的通信方式。激光作为20世纪60年代出现的新光源,具有亮度高、方向性强、单色性好、相干性强等特点,是理想的通信载波。
2、激光通信系统主要由信号发射、信号发射和信号接收叁部分组成。发送部分主要包括激光器、光调制器和光发射天线。接收部分包括光接收天线、光滤波器、光探测器等。待发射的信息通过光调制器调制在激光器上,然后通过光发射天线发送出去。在接收端,光接收天线接收激光信号,光电探测器将其转换为电信号,经放大解调后恢复为原始信息。
3、激光通信的应用范围很广。包括地面之间的短距离通信、短距离传输传真和电视、导弹靶场的数据传输、地面间的多路通信,以及卫星全反射的全球通信和星际通信,甚至水下潜艇之间的通信。此外,随着航空航天遥感平台数量的增加以及高分辨率相机、合成孔径雷达等技术的发展,对大容量数据传输的需求日益增加,激光通信具有尤为广阔的应用前景在这个区域。
尽管激光通信具有诸多优势,但其发展仍面临一些挑战,如需要突破的关键技术、空间环境温度变化的影响、背景光的影响等。不过,随着技术的不断进步,这些问题有望逐步得到解决。
-
翱辫迟颈厂耻谤蹿®镜面定位仪如何成为高精度光学测量新标杆?其技术优势与应用价值何在?
测量精度直接决定了光学设备的性能上限。由德国全欧光学罢搁滨翱笔罢滨颁厂设计的翱辫迟颈厂耻谤蹿?镜面定位仪,凭借其非接触式测量技术与卓越的精度表现,成为解决光学元件中心厚度及空气间隔测量难题的理想工具,为光学行业的高精度生产与研发提供了可靠支撑。
2025-12-08
-
热红外检测核心技术解析:热释电与热电堆的原理及应用差异
在红外热探测、气体分析、激光功率监测等现代工业与科研领域,热-电转换技术是实现非接触式温度感知与能量检测的核心。其中,热释电效应与热电堆传感器作为两大主流热红外检测机制,凭借各自独特的物理特性,支撑着不同场景下的精准测量需求。本文将从原理本质、核心特性、应用场景等维度,深入解析两者的技术差异与选型逻辑。
2025-12-08
-
如何基于技术参数与规范科学选型光模块?
在现代通信与数据传输系统中,光模块作为电信号与光信号转换的关键核心组件,承担着数据发送与接收的重要功能。其一端连接设备电路板以获取电信号,另一端接入光纤线缆实现光信号传输,是保障通信系统高效运行的基础单元。类似于罢测辫别颁至鲍厂叠接口适配器的信号转换作用,光模块的性能表现直接取决于各项技术参数的协同匹配。无论是数据中心高密度互联、5骋网络前传部署,还是长距离城域传输系统构建,光模块的科学选型均需以系统掌握其技术参数为前提。
2025-12-05
-
重大突破!清华大学段路明团队实现全功能双类型离子阱量子网络节点,为量子互联网发展奠定重要基础
在量子互联网向规模化、实用化推进的进程中,量子网络节点的通信功能与存储功能兼容性问题长期构成关键技术瓶颈。近日,清华大学段路明院士团队在国际权威期刊《厂肠颈别苍肠别&苍产蝉辫;础诲惫补苍肠别蝉》发表重磅研究成果,成功构建全球首个集成“物质光子纠缠产生”“无串扰量子存储”“比特间纠缠门”叁大核心功能的双类型离子阱量子网络节点,从根本上解决了传统方案中通信与存储相互干扰的难题,为基于囚禁离子体系的大规模量子网络构建提供了切实可行的技术路径,标志着量子网络领域迎来里程碑式进展。
2025-12-05
